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What this talk is about

g complex reductive Lie algebra.

M irreducible (usually∞-diml) U(g)-module.

I(M) = Ann(M) ⊂ U(g) two-sided (primitive) ideal.

Study I(M)) AV (I(M)), the simplest geom invt of I(M).

AV (I(M)) ⊂ g∗, G-invariant closed cone.

AV (I(M)) encodes interesting information about M.

1950s algebra: G has finite # nilp orbits on g∗.

1950s algebra: AV (I(M)) = finite union of nilp orbits.

FACT (Lusztig): M “integral” =⇒ AV (I(M)) special.

PLAN(1): sketch definitions, sketch Geck, Dong-Yang
integral characterization of special.

PLAN(2): ask for proof of FACT using Geck, Dong-Yang
characterization of special.
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Associated varieties

M U(g)-module generated by fin. diml. M0 ⊂ M.

Mn =def Un(g) ·M0, M0 ⊂ M1 ⊂ M2 ⊂ · · ·

gr M is a fin gen graded S(g)-module.

AV (M) =def Supp gr(M) ⊂ g∗ = Spec S(g).

Big idea for controlling AV (M):

M irreducible Ann(M) ⊃ max ideal IM ⊂ Cent U(g)

 AV (M)) ⊂ AV (gr IM)

gr IM = homogeneous polys of positive degree in S(g)G.

Nilpotent cone (where AV (M), AV (Ann(M) must live!) is

N ∗ = {λ ∈ g∗ | p(λ) = 0 (p ∈ gS(g)G homogeneous)}.

N ∗/G finite =⇒ AV (Ann(M)) = finite union of G) orbits.
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Structure of orbits: Jacobson-Morozov

B = TN Borel subgroup. Rational coweights are

X∗(T ) = Homalg(C×,T ).

d ∈ X∗(T ) Lie algebra Z-grading

g =
∑
n∈Z

gd(n), t ⊂ gd(0).

 parabolic Pd = LdUd , Ld = Gd , u =
∑
n>0

gd (n).

Jacobson-Morozov: nilpotent orbits ↪→ dominant cowts. . .

Nilpotent orbit O  unique dominant d ∈ X+
∗ (T ) so

O meets g∗d (2) in open, d ∈ [gd (2), gd (−2)].

Note: Levi L acts on g∗d (2) with finitely many orbits.
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Symplectic structure on orbits

Nilpotent O  dominant d ∈ Homalg(C×,T ),

O meets g∗d (2) in open, d ∈ [gd (2), gd (−2)].

λ ∈ O ∩ g∗d (2) =⇒ Gλ ⊂ Pd = LdUd , and

Gλ = Lλd · Uλ
d (Levi decomposition)

TeGλ(G · λ) = gd (−1) +
∑

m≥0

[
gd(−m − 2) + gd (m)/gd (m)λ

]
.

O is a symplectic algebraic variety: nondegenerate form

ωλ : g/gλ × g/gλ → C
ωλ(X + gλ ,Y + gλ) = λ([X ,Y ])

[gd (−m − 2)]∗ 'ωλ
gd (m)/gd (m)λ (m ≥ 0)

ωλ nondegenerate on gd (−1).

Kirillov-Kostant: ωλ relates O  representation theory.

Geck conjecture: O is special︸ ︷︷ ︸
Lusztig

⇐⇒ ωλ integral︸ ︷︷ ︸
to be explained

.
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Integral structures on g
Integral structure on N-diml Lie algebra g over char 0 field
k is free rank N lattice gZ ⊂ g subject to

g = gZ ⊗Z k , [gZ, gZ] ⊂ gZ.

Equivalent: basis {X1, . . . ,XN} subject to
[Xi ,Xj ] =

∑
k

ck
ij Xk , ck

ij ∈ Z.

Example: g = sl(2), basis (this is the one we’ll generalize)

H =

(
1 0
0 −1

)
X =

(
0 1
0 0

)
Y =

(
0 0
1 0

)
,

[H,X ] = 2X , [H,Y ] = −2Y , [X ,Y ] = H.

Example: g = so(3), basis (but this is worth more study!)

U =

 0 1 0
−1 0 0
0 0 0

 , V =

0 0 0
0 0 1
0 −1 0

 , W =

 0 0 1
0 0 0
−1 0 0

 ,

[U,V ] = W , [V ,W ] = U, [W ,U] = V .
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Chevalley integral structure
g ⊃ b ⊃ t complex reductive Lie algebra

roots ∆(g, t) ⊂ t∗, coroots ∆∨(g, t) ⊂ t.

Integral structure is called split if

1. Have integral basis = basis {X1, . . . ,X`} of t, root
vectors Xα for each root; and

2. [Xα,X−α] is equal to the coroot Hα = α∨.

Chevalley: in a split integral structure, set of root vecs up
to sign {±Xα} is determined up to Ad(T ), so should be
thought of as unique.

Still in a split integral structure,

Z∆∨ ⊂ tZ ⊂ {t ∈ t | α(t) ∈ Z (α ∈ ∆)};
and any such lattice tZ is allowed.

These tZ are the X∗(T )! root data for alg G, Lie(G) = g.

If g semisimple, split integral structure (unique up to
Ad(T )) with tZ = Z∆∨ is the Chevalley integral structure.
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Integral linear functionals
split int str gZ ⊂ g g∗Z =def HomZ(gZ,Z) ⊂ g∗.

O is weakly integral if O ∩ g∗Z 6= ∅; includes all nilpotent O.

Fix λ ∈ O ∩ g∗d,Z(2). Symplectic form ωλ defines

ωλ,Z : gZ/g
λ
Z ↪→

[
gZ/g

λ
Z
]∗
.

Nondegen/C =⇒ im(ωλ,Z) has finite index Nλ.

Grading by d factors ωλ,Z as direct sum of maps

ωλ,Z(m) : gd,Z(m − 1)/gd,Z(m)λ ↪→ [gd,Z(−m − 1)]∗ (m ≥ 1),

ωλ,Z(0) : gd,Z(−1) ↪→ gd,Z(−1)∗.

Each of these has finite index Nλ(m) in its image, and

Nλ = Nλ(0) ·
∏

m≥1Nλ(m).

λ is strongly integral if Nλ = 1; i.e., ωλ,Z nondeg/Z.

λ is Geck integral if Nλ(0) = 1; i.e., ωλ,Z(0) nondeg/Z.
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Lusztig’s notion of special nilpotent orbits

Springer (1978) defined inclusion j

j : nilpotent orbits in g∗ ↪→ Ŵ , O 7→ j(O).

Springer (1978) also defined surjection p (p ◦ j = id)

p : Ŵ � nilpotent orbits in g∗, σ 7→ p(σ).

KL theory partitions Ŵ in families (two-sided cells).

Theorem (Lusztig)
1. Each family F ⊂ Ŵ has unique special rep σs(F).
2. σs(F) is j(O(F)), special nilpotent orbit.
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Geck conjecture/Dong-Yang theorem

G ⊃ B ⊃ T , O ⊂ g∗  dominant d ∈ X∗(T ):

d ∈ [gd (2), gd (−2)], O ∩ g∗d (2) open in g∗d (2)

 ωλ symplectic on g/gλ, ωλ(0) on gd (−1) ⊂ g/gλ.

Fix also split integral structure gZ ⊂ g g∗Z ⊂ g∗.

May choose representative λZ ∈ O ∩ g∗d,Z(2).

Conj (Geck 2018) O special iff ∃λZ so ωλZ(0) nondegenerate/Z.
Proved by Geck (types EFG), Dong-Yang (2019) (types ABCD).
Proof is case-by-case using enumeration of special nilps.

Recall that hypothesis Geck integral in Geck conjecture is
weaker than natural hypothesis strongly integral.

Hope: Geck integral is equivalent to strongly integral.
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Lusztig theorem on special nilpotent orbits

Theorem (Lusztig) If L(γ) = simple highest weight
module, highest weight γ ∈ X ∗(T ), then

AV (Ann(L(γ))) = closure of special nilpotent O ⊂ g∗.

Proof is by KL theory, properties of families in Ŵ .

Hope (point of talk): there is a direct/conceptual path

If γ ∈ X∗(T ) then AV (L(γ)) ⊃ dense set of strongly integral λ.

Such a path would give a proof

(O special) =⇒ (O strongly integral) =⇒ (O Geck integral).

which is half of Geck’s conjecture.
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